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ABSTRACT

Approximate computing is an emerging design paradigm for

error-tolerant applications. e.g., signal processing and machine

learning. In approximate computing, the area, delay, or power con-

sumption of an approximate circuit can be improved by trading off

its accuracy. In this paper, we propose an approximate logic synthe-

sis approach based on a node-merging technique with an error rate

guarantee. The ideas of our approach are to replace internal nodes

by constant values and to merge two similar nodes in the circuit in

terms of functionality. We conduct experiments on a set of IWLS

2005 and MCNC benchmarks. The experimental results show that

our approach can reduce area by up to 80%, and 31% on average.

As compared with the state-of-the-art method, our approach has a

speedup of 51 under the same 5% error rate constraint.
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1 INTRODUCTION

As semiconductor technology advances, the number of tran-

sistors in VLSI designs grows exponentially. Thus, high power

consumption has become a major challenge for designers. One pos-

sible solution to this challenge is to minimize the designs while

preserving the functionality as much as possible. In the meantime,

many error-tolerant applications, such as multimedia processing

or machine learning, etc., are also emerging. Thus, approximate

computing [4] was proposed as a new design paradigm recently.

Approximate computing trades off circuits’ accuracies for achieving

smaller areas, delays, or power consumptions. Many previous works

have demonstrated the effectiveness of this design paradigm shift in

different design levels ranging from algorithm [5][20], architecture

[8][9], logic [1][17], and transistor [6] levels.
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On the logic level, approximate computing constructs a circuit

that approximately implements its function. Many previous works

focused on datapath designs, such as adders [10][26] or multipliers

[12][14]. Recently, approximate logic synthesis, which synthesizes

an approximate circuit from the original one under the given er-

ror constraint, was proposed [15][21][22][23][25]. In [15], Lai et

al. proposed a threshold logic network optimization method with

a hybrid cost function. In [22], Venkataramani et al. proposed to

identify signal pairs in the circuit with similar functionality, which

requires a significant amount of computation, and replace one with

the other. Wu et al. proposed to shrink nodes in a Boolean net-

work by approximating their factored-form expressions [23]. Yao

et al. proposed to apply approximate disjoint bi-decomposition to

the nodes to simplify the circuits [25]. Su et al. proposed a more

accurate batch error estimation to improve the existing approxi-

mate logic synthesis flows [21]. However, these previous works

conduct many approximate modifications for obtaining the best

optimization result in an operation, which is time-consuming. Thus,

in this work, we propose an efficient two-phase approximate logic

synthesis based on node merging.

The node merging is a logic optimization technique without

approximation. However, here we adopt it for approximate logic

synthesis for minimizing errors. Our approach has two phases. In

the first phase, we selectively replace a node in the circuit with a

constant 0 or 1 based on the magnitude of 1’s probability of the

node. This magnitude of 1’s probability for the replacement is a

user-defined parameter. In the second phase, we further replace a

given target node 𝑛𝑡 with its substitute node 𝑛𝑠 , where 𝑛𝑡 and 𝑛𝑠
are with similar functionalities. In summary, the proposed approach

is to synthesize an approximate circuit by merging nodes such that

the required error rate constraint is met. We demonstrate that our

approach is much more efficient than the state-of-the-art [21]. The

experimental results show that our approach achieved an average

of 31% area reduction and had a speedup of 51 compared with [21]

under the same 5% error rate constraint.

2 PRELIMINARIES
2.1 Error Metrics

To evaluate the error of an approximate circuit, several error

metrics, such as bit-flip error, error magnitude, and error rate have

been proposed [7]. Bit-flip error refers to the number of incor-

rect bits in the approximate circuit, which is relevant to memory

address approximation. Error magnitude refers to the maximal nu-

merical deviation in an approximate circuit’s outputs. Error rate

refers to the ratio of the number of input patterns that produces

incorrect outputs in an approximate circuit. Many previous works

[10][12][15][21][22][23][25] used the error rate as the error metric,

while few works [17][19] used the error magnitude. Since the error

rate is the most commonly used metric among these error metrics,

in this work, we adopt the error rate as the error metric.
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Figure 1: An example for presenting the node-merging ap-

proach. (a) The original circuit. (b) The resultant circuit after

replacing 𝒏3 by 𝒏1.

2.2 Background

An input-controlling value of a gate g determines the output

value of g no matter what the value of the other input is. An input-

noncontrolling value of g is opposite to its input-controlling value.

For an AND gate, its input-controlling value is 0 and its input-

noncontrolling value is 1.

The dominators [11] of a gate g are a set of gates G that all the

paths from g to any POs must pass through. The side inputs of G

are the inputs of G that are not in the transitive fanout cone of g.

A stuck-at fault in VLSI testing is a fault model used to represent

a manufacturing defect on wires or gates in digital circuits. A stuck-

at 0 (sa0) or stuck-at 1 (sa1) fault on a faulty wire or faulty gate

indicate that the signal on a faulty wire (gate) is stuck at a fixed

logic value “0” or “1”, respectively. A stuck-at fault test is a process

to search for a test pattern that can generate the different values at

any PO to distinguish a faulty circuit with a stuck-at fault from a

fault-free one. A test pattern needs to activate the fault effect and

propagate the fault effect to any PO. If there exists no test pattern

that can both activate and propagate the fault effect to any PO, the

fault is an untestable fault.

The mandatory assignments (MAs) are the unique value assign-

ments to some nodes necessary to generate a test pattern for de-

tecting a fault in the circuit. Consider a stuck-at fault on a gate

g, the MAs are obtained by setting g to the fault-activation value

and by setting the side inputs of the dominators of g to the input-

noncontrolling values. By performing logic implications forward

and backward from these MAs, more MAs can be inferred. If the

MAs of a stuck-at v (sav) fault on a wire are inconsistent, it means

that no test pattern exists for this fault. Therefore, this fault is

untestable and g can be replaced by the faulty value v.

2.3 Node-Merging Approach

The node-merging (NM) approach [2][3] is a logic optimization

technique that identifies node mergers for obtaining a minimized

circuit considering observability don’t cares (ODCs). NM modeled

the process of merging two nodes as a misplaced-wire error in

the circuit and discussed the detection of this error. We use the

example in Fig. 1 to demonstrate the NM [2][3]. The circuit in Fig.

1(a) is presented in And-Inverter-Graphs (AIGs) [18], where 𝑎, 𝑏, 𝑐 ,
and 𝑑 are primary inputs (PIs), nodes 𝑛1 ∼ 𝑛5 are two-input AND
gates, and a dot on an edge is an inverter. In this circuit, 𝑛1 and
𝑛3 are not functionally equivalent, merging them (i.e., creating a

misplaced-wire error) may affect the overall functionality of the

circuit. However, we observed that the values of 𝑛1 and 𝑛3 only

differ when 𝑏 = 𝑐 and 𝑑 = 1. Since 𝑏 = 𝑐 implies 𝑛2 = 0, and 𝑛2 =
0 is an input-controlling value to 𝑛5, 𝑛2 = 0 can block the error
effect of merging 𝑛3 with 𝑛1. Thus, this misplaced wire error is
undetectable, and merging nodes 𝑛3 with 𝑛1 will not change the
overall functionality of the circuit.

To detect the error of merging two nodes, the input pattern has

to cause different values on𝑛𝑡 and𝑛𝑠 for activating and propagating
the error effect to any PO. If there is no input pattern that can detect

the error, merging 𝑛𝑡 with 𝑛𝑠 is safe from the viewpoint of circuit’s

overall functionality. NM [2][3] proposed a sufficient condition

about merging 𝑛𝑡 and 𝑛𝑠 as stated in Condition 1.
Condition 1 [2][3]: Let 𝑓 denote an error of replacing 𝑛𝑡 with 𝑛𝑠 . If

𝑛𝑠 = 1 and 𝑛𝑠 = 0 are MAs for the stuck-at 0 and stuck-at 1 fault test

on 𝑛𝑡 , respectively, 𝑓 is undetectable.

Let us briefly explain the effectiveness of Condition 1. The error 𝑓
in Condition 1 represents the merging of𝑛𝑡 and𝑛𝑠 . Since generating
different values for 𝑛𝑡 and 𝑛𝑠 is equivalent to activating the error
effect, generating 𝑛𝑠 = 0 is necessary for testing the sa0 fault on 𝑛𝑡
(𝑛𝑡 has to be 1 for activating sa0 fault). However, if 𝑛𝑠 = 1 is also an
MA for the sa0 fault on 𝑛𝑡 , the sa0 fault on 𝑛𝑡 is untestable due to
the contradiction on the value of 𝑛𝑠 . In the same way, if 𝑛𝑠 = 0 is
also an MA for the sa1 fault on 𝑛𝑡 , the sa1 fault on 𝑛𝑡 is untestable.
Since the error of replacing 𝑛𝑡 with 𝑛𝑠 , where we care about the
different values of 𝑛𝑡 and 𝑛𝑠 only, cannot be detected by testing the
sa0 and sa1 faults on 𝑛𝑡 , 𝑓 is undetectable.
Based on Condition 1, the process of identifying the node merg-

ers is to compute the MAs of the sa0 and sa1 fault tests on 𝑛𝑡 . We
also use the circuits in Fig. 1 to demonstrate the NM algorithm.

Suppose 𝑛3 is a target node 𝑛𝑡 , we would like to find its substitute
nodes 𝑛𝑠 . We compute the MAs of the sa0 and sa1 fault tests by

setting 𝑛3 to the fault-activating value and the side inputs of 𝑛3’s
dominators to the fault-propagating values. The MAs of the sa0

fault test on𝑛3 are {𝑛3 = 1,𝑛2 = 1, 𝒅 = 1, 𝑐 = 0,𝑏 = 1, 𝒏1 = 1,𝑛4 = 0, 𝒏5
= 1} and that of the sa1 fault test on 𝑛3 are {𝑛3 = 0, 𝑛2 = 1, 𝒅 = 0, 𝑐 =
0, 𝑏 = 1, 𝒏1 = 0, 𝒏5 = 0}. As a result, 𝑑 and 𝑛1 satisfy the requirement
of Condition 1, and can be chosen as the 𝑛𝑠 . However, although 𝑛5
also satisfies the requirement of Condition 1, 𝑛5 will not be chosen
as an 𝑛𝑠 . This is because 𝑛5 is in the transitive fanout cone of the
target node 𝑛3. If 𝑛3 is replaced by 𝑛5, a cyclic combinational circuit
occurs, which is not allowed in that work.

3 PROPOSED APPROACH

In this section, we first present the proposed approximate node

merging, which consists of two phases, node to constant and node

replacement. Then, we present the flow of the proposed approach.

3.1 Node to Constant

By observing the circuit, we find that the functionalities of some

nodes are very similar to constant 0 or 1. If we can easily find

these nodes and replace them by constant 0 or 1, the circuit can be

simplified effectively with fewer errors. Thus, the node to constant

phase is proposed to focus on replacing nodes by constant 0 or 1. In

other words, a node having a higher magnitude of 1’s probability

will be replaced by a constant 1. The magnitude of 1’s probability 𝑝
for the replacement can be determined by users.

To determine if a node is similar to a constant 0 or 1, we simulate a

large number r of random patterns for estimating the 1’s probability
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Algorithm 1: Pseudo-code for Node to Constant Phase

Input: Original circuit𝐶 , error rate constraint 𝜀1;
Output: An approximate circuit𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

1 Initialization: error rate 𝑒𝑟 = 0;𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐶 ; 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 = 5;

2 RandomSimulation(𝐶 , 𝑟 );

3 for each node in𝐶𝑎𝑝𝑝𝑟𝑜𝑥 in the DFS order from POs to PIs

4 if (
|1|
𝑟 ≥ 𝑝)

5 Replaced by constant 1;

6 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = CleanFaninCone(𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

7 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

8 if (𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 )
9 𝑒𝑟 = Compute_error(𝐶 , 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

10 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

11 else if (
|1|
𝑟 ≤ 1 − 𝑝)

12 Replaced by constant 0;

13 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = CleanFaninCone(𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

14 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

15 if (𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 )
16 𝑒𝑟 = Compute_error(𝐶 , 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

17 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

18 if (𝑒𝑟 > 0.5𝜀1) 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 = 1;

19 if (𝑒𝑟 < 𝜀1) 𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

20 else break;

21 return𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

of each node in the circuit. For each node in the circuit, we count

the number of 1s at the node, denoted as |1|, after simulating 𝑟

patterns. If one node is with the probability of
|1 |
𝑟 ≥ 𝑝 , the node

will be replaced by a constant 1. If one node is with the probability

of
|1 |
𝑟 ≤ 1 − 𝑝 , the node will be replaced by a constant 0.
Algorithm 1 is the pseudo-code of node to constant phase. The

inputs to the algorithm are the original circuit 𝐶 and the error

rate constraint 𝜀1 in this phase. The output of the algorithm is an

approximate circuit 𝐶𝑎𝑝𝑝𝑟𝑜𝑥 with an error rate less than 𝜀1. First,
we initialize the error rate of approximate circuit 𝑒𝑟 to zero and the
period of checking the error rate 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 to five. Then, we simulate

𝑟 random patterns1 to obtain the number of 1s at each node. We

iteratively examine a node from the POs to the PIs in the depth-first

search (DFS) order and replace it with a constant if applicable. The

reason for adopting the DFS order is that we can also remove the

single-fanout fanin (SFoFi) nodes in the fanin cone of the replaced

node for effectively reducing the circuit. Then the error rate of the

new approximate circuit is estimated by using 10𝑟 random patterns.

Since this phase allows more errors and node to constant operation

usually does not create many errors, estimating the error rate after

every node to constant operation is not necessary. To elevate the

efficiency of our approach, we compute the error rate every five

times of node to constant operations if the error rate is smaller than

0.5𝜀1; otherwise, we compute the error rate after every node to

constant operation. If the error rate of approximate circuit is less

1The number of random patterns 𝑟 for simulating the circuit to obtain the number of
1s at each node is a user-defined parameter. In our approach, we set 𝑟 to 10,000.

than 𝜀1, the algorithm proceeds to the next iteration; otherwise, the

approximate circuit in the last iteration is returned as the output.

3.2 Node Replacement

After running the node to constant phase, we conduct the node

replacement phase, which aims to find the substitute node 𝑛𝑠 to
replace the target node 𝑛𝑡 efficiently. The idea is that when 𝑛𝑡 and
𝑛𝑠 are with a high similarity, we replace 𝑛𝑡 with 𝑛𝑠 under accepting
some errors. One possible naive method to find out the 𝑛𝑡 -𝑛𝑠 pairs
is to compare the signatures of the nodes after simulation. For

example, assume that the signature of 𝑛𝑡 = 110011 and 𝑛𝑠 = 010011
after simulating six random patterns, we can consider they are a

𝑛𝑡 -𝑛𝑠 pair. This idea is similar to that of the node to constant phase.
However, this naive method cannot effectively find out the 𝑛𝑡 -𝑛𝑠
pairs as further considering the error rate. That is, this naive method

cannot observe the error effect caused by the replacement during

the procedure of finding 𝑛𝑠 , which is quite important for the last
phase of this approach. Therefore, we propose the node replacement,

which can effectively find out the 𝑛𝑡 -𝑛𝑠 pairs based on NM [2][3].

As mentioned in Section 2, NM [2][3] proposed a sufficient condi-

tion for finding node mergers. If we arbitrarily choose an 𝑛𝑡 -𝑛𝑠 pair,
the replacement might cause two faults. The first one is denoted as

𝑓10, which means 𝑛𝑡 = 1 before the replacement and 𝑛𝑡 = 0 after

the replacement. The second one is denoted as 𝑓01, which means
𝑛𝑡 = 0 before the replacement and 𝑛𝑡 = 1 after the replacement.

Next, we explain the relationship between Condition 1 of NM [2][3]

and these two faults caused by the replacement from the viewpoint

of test pattern existence. In the rest of this paper, 𝑀𝐴𝑠(𝑛𝑡 = 𝑠𝑎0)
denotes the MAs for the sa0 fault test on 𝑛𝑡 , and 𝑀𝐴𝑠(𝑛𝑡 = 𝑠𝑎1)
denotes the MAs for the sa1 fault test on 𝑛𝑡 . With these notations,

we can divide Condition 1 into two parts:

(1) 𝑛𝑠 = 1 is an MA in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0).
(2) 𝑛𝑠 = 0 is an MA in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1).

In Part (1), for detecting 𝑛𝑡 sa0 fault, we can derive the𝑀𝐴𝑠 (𝑛𝑡 =
𝑠𝑎0), which includes 𝑛𝑡 = 1. We collect all the patterns satisfying

𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) in 𝑇0. If we find an 𝑛𝑠 = 1 that is in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0)
and use it to replace𝑛𝑡 , all the input patterns in𝑇0 cause𝑛𝑡 = 𝑛𝑠 = 1.

Due to the same value of 𝑛𝑡 and 𝑛𝑠 in 𝑇0, replacing 𝑛𝑡 with 𝑛𝑠 will
not cause 𝑓10. Similarly, in Part (2), for detecting 𝑛𝑡 sa1 fault, we can
derive the𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1), which includes 𝑛𝑡 = 0. We collect all the

patterns satisfying 𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1) in 𝑇1. If we find an 𝑛𝑠 = 0 that

is in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1) and use it to replace 𝑛𝑡 , all the input patterns
in 𝑇1 cause 𝑛𝑡 = 𝑛𝑠 = 0. Due to the same value of 𝑛𝑡 and 𝑛𝑠 in 𝑇1,
replacing 𝑛𝑡 with 𝑛𝑠 will not cause 𝑓01. In summary, a node with a
value simultaneously satisfying Part (1) and Part (2) of Condition 1

will not cause both 𝑓10 and 𝑓01 faults. Thus, the node can be selected
as an 𝑛𝑠 for replacement without changing circuit’s functionality.
However, if a node satisfies Part (1) but does not satisfy Part (2)

of Condition 1, the input patterns in 𝑇1 will detect 𝑓01. Similarly, if
a node with a value only satisfies Part (2) of Condition 1, the input

patterns in 𝑇0 will detect 𝑓10. Therefore, in the node replacement

phase, we consider to select a node satisfying either Part (1) or

Part (2) as an 𝑛𝑠 to replace the target node 𝑛𝑡 . The next issue to be
considered is judging which node is a better 𝑛𝑠 as satisfying either
Part (1) or Part (2).
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Figure 2: An example for demonstrating node replacement.

(a) The original circuit. (b) The resultant circuit after replac-

ing 𝒏1 with 𝒏2. (c) The value assignments of 𝑴𝑨𝒔(𝒏5 = 𝒔𝒂0).
(d) The value assignments of 𝑴𝑨𝒔(𝒏5 = 𝒔𝒂1).
Algorithm 2: Pseudo-code for Node Replacement Phase

Input: Original circuit𝐶 , simplified circuit by node to constant
phase𝐶𝑛𝑐 , error rate constraint 𝜀;

Output: An approximate circuit𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

1 Initialization:𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐶𝑛𝑐 ; 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0; 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 = 3;

2 for each node 𝑛𝑡 in𝐶𝑎𝑝𝑝𝑟𝑜𝑥 in the DFS order from the POs to the PIs

3 Compute𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) ;

4 Compute𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1) ;

5 for each level 𝑙 in𝐶𝑎𝑝𝑝𝑟𝑜𝑥 in the ascending order from the PIs to

the POs

6 𝑁𝐴0 = number of the 𝑙
𝑡ℎ level’s node assignments in

𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) ;
7 𝑁𝐴1 = number of the 𝑙

𝑡ℎ level’s node assignments in

𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1) ;
8 if (𝑁𝐴0 = 𝑁𝐴1 = 0) continue;

9 if (𝑁𝐴0 < 𝑁𝐴1)

10 𝑛𝑠 = node that has the lowest probability of 1 when
𝑛𝑡 = 0 in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) ; break;

11 else

12 𝑛𝑠 = node that has the lowest probability of 0 when
𝑛𝑡 = 1 in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1) ; break;

13 Replace 𝑛𝑡 by 𝑛𝑠 ;

14 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = CleanFaninCone(𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

15 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

16 if (𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 )
17 𝑒𝑟 = Compute_error(𝐶 , 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 );

18 𝑒𝑟𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

19 if (𝑒𝑟 > 0.8𝜀) 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 = 1;

20 if (𝑒𝑟 < 𝜀) 𝐶𝑎𝑝𝑝𝑟𝑜𝑥 = 𝑁𝑒𝑤𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

21 else break;

22 return𝐶𝑎𝑝𝑝𝑟𝑜𝑥 ;

We use an example in Fig. 2 to explain the satisfaction of either

Part (1) or Part (2) in Condition 1. In the AIG of Fig. 2(a), suppose 𝑛1
is the 𝑛𝑡 . We first compute the𝑀𝐴𝑠 (𝑛1 = 𝑠𝑎0) and𝑀𝐴𝑠 (𝑛1 = 𝑠𝑎1),

and they are𝑀𝐴𝑠 (𝑛1 = 𝑠𝑎0) = {𝑛1 = 1, 𝒙1 = 1, 𝒙2 = 1, 𝑛7 = 0, 𝑛6 =
1, 𝑛2 = 0, 𝑛5 = 1, 𝒙3 = 0, 𝑛3 = 0, 𝑛4 = 0, 𝒙4 = 0} and 𝑀𝐴𝑠 (𝑛1 =
𝑠𝑎1) = {𝑛1 = 0, 𝑛7 = 1, 𝑛6 = 1, 𝑛2 = 0, 𝑛5 = 1, 𝑛3 = 0, 𝑛4 = 0},

respectively. There are four MAs that are PIs in 𝑀𝐴𝑠 (𝑛1 = 𝑠𝑎0),
and 𝑇0 = {𝑥1𝑥2𝑥3𝑥4𝑥5 = 11000, 11001}2, which is represented as
“1100-”. Similarly, there is no PIs in𝑀𝐴𝑠 (𝑛1 = 𝑠𝑎1), then𝑇1 = “-----”.
The number of test patterns in𝑇0 is 2 and that in𝑇1 is 2

5 = 32. Since

in Part (1) and Part (2), the 𝑛𝑠 for the replacement can make the
corresponding fault untestable, we select the 𝑛𝑠 that is with respect
to a larger test pattern set. In this example, the size of 𝑇1 is larger
than𝑇0. Therefore, we choose an 𝑛𝑠 satisfying Part (2) of Condition
1 to replace 𝑛𝑡 .
On the other hand, if the size of 𝑇0 and 𝑇1 are the same, we

choose an 𝑛𝑠 from the part that has fewer assignments closest to

the input side of circuit in the MA set. We use Figs. 2(c) and 2(d)

to explain this situation. Suppose 𝑛5 is the 𝑛𝑡 , Fig. 2(c) shows the
assignments in𝑀𝐴𝑠 (𝑛5 = 𝑠𝑎0). There are four assignments (𝑛1, 𝑛2,
𝑛3, and 𝑛4) in 𝑀𝐴𝑠 (𝑛5 = 𝑠𝑎0) that are closest to the input side of
circuit. Similarly, Fig. 2(d) shows the assignments in𝑀𝐴𝑠 (𝑛5 = 𝑠𝑎1),
but there are only two assignments (𝑛1 and 𝑛2) that are closest to
the input side of circuit. In this situation, we will choose the 𝑛𝑠
from the set satisfying Part (2) of Condition 1.

After determining the source of 𝑛𝑠 , either from Part (1) or Part

(2), we next select an 𝑛𝑠 to replace 𝑛𝑡 . In the example of 𝑛𝑡 = 𝑛1,
there are three 𝑛𝑠 (𝑛2 = 0, 𝑛3 = 0, and 𝑛4 = 0) satisfying Part (2)

of Condition 1. We will select the node that might cause fewer

𝑓10 faults after the replacement as the 𝑛𝑠 . Therefore, we conduct
another round of random simulation to obtain the probability of

(𝑛𝑡 , 𝑛𝑠 )=(1, 0). The probabilities of (𝑛𝑡 , 𝑛𝑠 )=(1, 0) are
4
32 ,

6
32 , or

6
32

when 𝑛𝑠 = 𝑛2, 𝑛3, or 𝑛4, respectively. Since replacing 𝑛1 with 𝑛2
creates fewer 𝑓10 faults, 𝑛2 is a better 𝑛𝑠 to replace 𝑛𝑡 . The resultant
circuit of replacing 𝑛1 with 𝑛2 is shown in Fig. 2(b). If all the 𝑛𝑠
are with the same probability, we randomly choose one 𝑛𝑠 for the
replacement.

Algorithm 2 is the pseudo-code of node replacement phase. The

inputs to the algorithm are the original circuit 𝐶 , the simplified
circuit by the node to constant phase 𝐶𝑛𝑐 , and the error rate con-
straint 𝜀. We initialize the period of checking the error rate 𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑
to three. Each node in 𝐶𝑎𝑝𝑝𝑟𝑜𝑥 is selected as 𝑛𝑡 in the DFS order
from the POs to the PIs. First, we compute the𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) and
𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1). Then, we count the number of node assignments

at the 𝑙𝑡ℎ level. The level of a node is the length of the shortest path
from the PIs to the node. Note that when 𝑙 is equal to 0, we use the
number of PI assignments to represent the sizes of𝑇0 and𝑇1. If there

does not exist the 𝑙𝑡ℎ level node assignment in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) and
𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1), we count the number of the next level’s node as-
signment in𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎0) and𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎1). Then, we select the
MAs set with respect to 𝑛𝑠 by choosing a smaller number between
𝑁𝐴0 and 𝑁𝐴1, where 𝑁𝐴0 and 𝑁𝐴1 are generally inversely pro-
portional to the sizes of 𝑇0 and 𝑇1. Next, we choose the 𝑛𝑠 that has
the lowest probability of (𝑛𝑡 , 𝑛𝑠 )=(𝑣, 𝑣

′) when 𝑛𝑠 ∈ 𝑀𝐴𝑠 (𝑛𝑡 = 𝑠𝑎𝑣).
Finally, we remove the SFoFi nodes in the fanin cone of 𝑛𝑡 and
compute the error rate 𝑒𝑟 by conducting random simulation after

2The computation of all MAs for a stuck-at-fault test is an NP-complete problem [13].
Here we compute as many MAs as possible by a heuristic. Thus, 𝑇0 and 𝑇1 are not
exact, and their sizes can be considered as the upper bound of test pattern number for
testing the faults.

269



An Efficient Approximate Node Merging with an Error Rate Guarantee ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

replacing 𝑛𝑡 with 𝑛𝑠 . Similar to the node to constant phase, the error
rate is estimated by using 10𝑟 random patterns. If the error rate is

smaller than 0.8𝜀, it is computed every three times of node replace-
ment operation; otherwise, after every node replacement operation.

If the error rate of approximate circuit has exceeded 𝜀, the last legal
approximate circuit is returned as the output.

3.3 Error Rate Estimation

As mentioned, we adopt the error rate as a metric to measure

the quality of the approximate circuit. Since we do not simulate

the input patterns exhaustively like most previous works, the error

rate of an approximate circuit is estimated by EQ (1)

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =
|𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 |

|𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 |
× 100% (1)

where |𝑇𝑜𝑡𝑎𝑙𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 | represents the total number of random
simulations, |𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 | is the number of simulations hav-
ing incorrect outputs. At the end of the node to constant phase, we

use 10𝑟 random patterns to determine if the error rate has exceeded

𝜀1. At the end of node replacement phase, we use another set of 10𝑟
random patterns to evaluate the final error rate 𝜀. Note that in the
later iterations of approximations, it is much easier for the error

rate to violate the error rate constraint. Therefore, we heuristically

set the different periods for checking the error rate at earlier and

later iterations.

4 EXPERIMENTAL RESULTS

We implemented the proposed approach in C language within

an ABC [27] environment. The experiments were conducted on an

Intel Xeon E5-2650v2 2.60 GHz CentOS 6.7 platform with 64GBytes.

The benchmarks are from IWLS 2005 [28] and MCNC [24]. Since

approximately optimizing a design with a long critical path design

causes an enormous error effect, the arithmetic multiplier was ex-

cluded from the benchmarks. The combinational portion of each

benchmark was considered only and transformed into an AIG for-

mat. We used the error rate calculation tool [16] for computing the

exact error rate of the approximated circuits.

We conducted three experiments. The first one is to present the

circuit size reduction by setting different magnitude of 1’s probabil-

ity (𝑝) in the node to constant phase. The second one is to compare
the circuit size reduction and the CPU time among our approach,

the state-of-the-art [21], and a naive method under a 5% error rate

constraint. The last one is to demonstrate the effectiveness of our

approach under different error rate constraints.

4.1 Probability p in Node to Constant Phase

Table 1 shows the result comparison in the node to constant

phase when using different magnitudes of 1’s probability 𝑝 under
3% (𝜀1 = 0.6𝜀 = 0.6 × 5%) error rate constraint. Columns 1 ∼ 3 list
the information of benchmarks including names, the number of PIs

and POs, and the number of nodes in each benchmark represented

by AIG, respectively. Columns 4 ∼ 7 list the percentages of the node

count reduction (R.) of the four 𝑝 values (99%, 98%, 97%, and 96%).
For example, the benchmark alu4 has 14 PIs and 8 POs, and 1601

nodes. 23.24% of nodes in the circuit were removed by setting 𝑝
to 98%. However, setting 𝑝 to 99%, 97%, and 96% removed 21.24%,

16.61%, and 18.05% of nodes in the circuit, respectively. According

Table 1: The comparison of node count reduction among dif-

ferent magnitudes of 1’s probability in the node to constant

phase

Benchmark Information Node Count Reduction (R.)(%)
Name |PI |/ |PO | |Node | 𝑝 = 99% 𝑝 = 98% 𝑝 = 97% 𝑝 = 96%
misex 25/18 91 29.67 29.67 29.67 0.00
c880 60/26 323 11.76 11.76 10.53 10.53
chkn 29/7 344 63.08 63.08 63.08 68.90
c1908 33/25 412 13.59 22.33 23.06 23.06
i9 88/63 541 0.00 0.00 0.92 0.92
c2670 233/140 694 17.58 18.16 18.88 0.00
simple_spi 148/144 815 9.82 18.90 18.90 9.45
c3540 50/22 941 4.25 4.25 3.08 0.00
dalu 75/16 1067 4.87 4.87 9.18 4.87
cps 24/109 1244 49.92 49.92 36.82 19.69
c5315 179/123 1415 1.91 1.91 0.00 0.00
c7552 207/108 1537 0.78 0.78 1.61 4.42
alu4 14/8 1601 21.24 23.24 16.61 18.05
s15850 611/684 2752 19.66 19.66 19.66 19.88
des_area 368/192 4391 1.57 0.98 0.43 0.00
s38417 1664/1742 8147 12.80 12.59 0.00 0.00
Average — 1645 16.41 17.63 15.78 11.24

to Table 1, setting 𝑝 to 98% in our approach can remove 17.63% of

nodes for all the benchmarks on average, which is the best among

these four 𝑝 values. When setting 𝑝 = 99%, since there are not many

nodes satisfying this requirement, the amount of nodes that can

be approximated to constant 0 or 1 is fewer. On the other hand,

when we set 𝑝 = 96%, although many nodes can be approximated

to constant 0 or 1, the caused larger error effect terminates this

phase earlier. As a result, we heuristically set 𝑝 to 98% in the node

to constant phase to minimize the circuit size.

4.2 Circuit Size Reduction

In the second experiment, we compare the circuit size reduction

using our approach against the state-of-the-art [21] and the naive

method. In the naive method, the node replacement phase is changed

to use the same idea of the node to constant phase when choosing

the 𝑛𝑡 -𝑛𝑠 pairs for the replacement.
In Table 2, Columns 4 ∼ 6 list the percentages of the node count

reduction (R.), error rate (E.), and the required CPU time measured

in second. Columns 7 ∼ 9 list the corresponding results of [21]

and Column 10 lists the ratio of CPU time between [21] and our

approach for each benchmark. Columns 11 ∼ 14 list the correspond-

ing results of the naive method. Since the benchmark s38417 is too

large, the error rate calculation tool [16] cannot report the error

rate of this benchmark. According to Table 2, the exact error rates

for all the benchmarks in the three approaches are within 5%. The

percentages of average node reduction for our approach and [21]

are similar. However, our approach has a speedup of 51 under the

same 5% error rate constraint considering all the benchmarks. The

average speedup is 12 for all the benchmarks. It can be seen that

the speedup of our approach is high for larger circuits, e.g., s38417,

s15850. This indicates that our approach is more scalable than [21].

On the other hand, the naive method spent 208.72 seconds for re-

moving 17.60% of nodes for all the benchmarks on average, while

our approach spent 48.95 seconds for removing 31.06% of nodes on

average.

In the last experiment, we demonstrate the effectiveness of our

approach by setting 5% and 10% error rate constraints. Since the

CPU time of the state-of-the-art [21] for 10% error rate constraint
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Table 2: The comparison of experimental results among the state-of-the-art [21], the naive method, and our approach

Benchmark Information Ours Su’s [21] Naive
Name |PI |/ |PO | |Node | R.(%) E.(%) Time (s) R.(%) E.(%) Time (s) Ratio R.(%) E.(%) Time (s) Ratio
misex 25/18 91 58.24 3.98 1.45 52.75 4.54 1.55 1.07 47.25 4.79 4.63 3.19
c880 60/26 323 17.34 4.29 3.71 14.86 4.09 2.59 0.70 7.12 5.00 31.58 8.51
chkn 29/7 344 80.81 4.83 5.69 80.52 4.91 9.68 1.70 72.38 3.48 23.41 4.11
c1908 33/25 412 60.92 4.05 3.41 61.65 3.66 8.43 2.47 39.32 3.71 17.64 5.17
i9 88/63 541 1.66 3.71 5.94 2.40 4.78 2.17 0.37 1.29 3.71 6.90 1.16
c2670 233/140 694 22.19 3.33 6.35 29.68 4.47 51.17 8.06 18.16 4.48 25.57 4.03
simple_spi 148/144 815 20.86 5.00 12.64 19.75 4.80 20.67 1.64 10.18 3.62 17.45 1.38
c3540 50/22 941 11.58 4.81 30.79 8.18 4.76 10.16 0.33 1.38 4.79 28.95 0.94
dalu 75/16 1067 33.83 5.00 38.56 34.68 4.90 47.95 1.24 0.84 3.56 13.36 0.35
cps 24/109 1244 68.65 4.71 25.41 70.50 4.90 110.49 4.35 20.02 4.71 10.87 0.43
c5315 178/123 1415 6.15 4.87 9.41 1.84 3.88 48.86 5.19 3.96 4.93 151.23 16.07
c7552 207/108 1537 7.29 4.11 29.52 9.04 1.86 18.25 0.62 1.43 4.64 36.71 1.24
alu4 14/8 1601 44.28 4.13 26.72 31.92 1.23 32.64 1.22 20.67 4.57 37.50 1.40
s15850 611/684 2752 32.34 4.89 136.92 35.17 4.98 2546.44 18.60 24.02 5.00 207.63 1.52
des_area 368/192 4391 5.26 3.01 185.74 7.79 4.98 775.06 4.17 0.14 4.77 83.26 0.45
s38417 1664/1742 8147 25.56 — 260.97 25.19 — 36819.18 141.09 13.42 — 2642.78 10.13
Average — 1645 31.06 — 48.95 30.37 — 2531.58 12.05 17.60 — 208.72 3.76
Ratio — — — — 1 — — 51.72 — — — 4.26 —

Table 3: The comparison of experimental results under dif-

ferent error rate constraints in our approach

Benchmark Information 𝜀 = 5% 𝜀 = 10%
Name |PI |/ |PO | |Node | R.(%) Time (s) R.(%) Time (s)
misex 25/18 91 58.24 1.45 71.43 1.63
c880 60/26 323 17.34 3.71 21.05 7.91
chkn 29/7 344 80.81 5.69 89.53 9.24
c1908 33/25 412 60.92 3.41 62.86 8.03
i9 88/63 541 1.66 5.94 6.28 6.56
c2670 233/140 694 22.19 6.35 35.45 7.98
simple_spi 148/144 815 20.86 12.64 25.15 27.55
c3540 50/22 941 11.58 30.79 17.22 35.3
dalu 75/16 1067 33.83 38.56 46.30 64.67
cps 24/109 1244 68.65 25.41 69.77 26.49
c5315 178/123 1415 6.15 9.41 8.48 11.54
c7552 207/108 1537 7.29 29.52 11.39 48.30
alu4 14/8 1601 44.28 26.72 52.34 87.59
s15850 611/684 2752 32.34 136.92 35.32 152.24
des_area 368/192 4391 5.26 185.74 8.75 146.93
s38417 1664/1742 8147 25.56 260.97 26.70 580.99
Average — 1645 31.06 48.95 36.75 76.43

exceeded the time limit, 10 hours, we cannot list their results here.

In Table 3, Columns 4 ∼ 5 and Columns 6 ∼ 7 list the results under

5% and 10% error rate constraints, respectively. According to Table

3, our approach for 10% error rate constraint achieved more circuit

size reduction on average with some CPU time overhead.

5 CONCLUSION

In this paper, we propose an efficient node merging approach to

synthesize the approximate circuits under the error rate constraint.

The main ideas include changing nodes to constant nodes, and

replacing the target nodes by the substitute nodes with a high

similarity. The experimental results demonstrate that our approach

has achieved the similar quality of approximate circuit as compared

to the state-of-the-art, while having a significant speedup.
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